Received 8 March 2007 Accepted 3 April 2007

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Fathia Chehimi-Moumen^a and Mokhtar Férid^b*

^aLaboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and ^bLaboratoire des Matériaux, Institut National de Recherche Scientifique et Technique, BP 95, 2050 Hammam-Lif, Tunisia

Correspondence e-mail: mokhtar.ferid@inrst.rnrt.tn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (P–O) = 0.004 Å R factor = 0.027 wR factor = 0.059 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The type IV polymorph of $KDy(PO_3)_4$

Single crystals of potassium dysprosium polyphosphate, $KDy(PO_3)_4$, were prepared by the flux method. The title compound crystallizes in structure type IV of KLn(PO₃)₄ (Ln = lanthanide) compounds. Two helical polyphosphate chains cross the unit cell along [101] with a repeat unit of eight tetrahedra, creating channels where the Dy and K atoms are situated. They have coordination numbers of 8 and 9, respectively.

Comment

Phosphates of general formula $M^{1}Ln(PO_{3})_{4}$ (M = alkaline metal or silver; Ln = lanthanide) have been the subject of several investigations due to their interesting optical properties (Hong & Chinn, 1976; Hashimoto et al., 1991; Horchani et al., 2003). Because most of these phosphates show polymorphism, they have been classified into seven structural types denoted by Roman numerals I to VII (Palkina et al., 1981; Bagieu-Beucher & Guitel, 1988).

Although representatives of potassium lanthanide polyphosphates, KLn(PO₃)₄, are known to crystallize in types III, IV, V and VII (Durif, 1995), for KDy(PO₃)₄ only the existence of type III was originally reported by Palkina et al. (1976). In a later study, the synthesis and the crystal structure of another polymorph with a cyclotetraphosphate anion were described by Horchani et al. (2002). Here, we report the preparation and crystal structure refinement of a third KDy(PO₃)₄ polymorph, crystallizing in structure type IV (space group $P2_1/n$).

Two helical polyphosphate chains cross the unit cell of the title compound along [101], with a repeat unit of eight tetrahedra, creating channels where the K and Dy atoms are located (Fig. 1). The P–O distances within the polyphosphate

Figure 1

The structural arrangement of KDy(PO₃)₄, viewed along [100]. The polyphosphate chains are displayed in the polyhedral representation, with one chain gshown as hatched polyhedra.

All rights reserved

© 2007 International Union of Crystallography

Figure 2

The repeat unit of the polyphosphate chain in KDy(PO₃)₄, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z - \frac{1}{2}$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x + 1, -y - 1, -z; (v) x + 1, -y - 1, -z - 1; (vi) x - 1, y, z - 1.]

chains range from 1.476 (3) to 1.492 (3) Å for the terminal P– O bonds and from 1.588 (3) to 1.608 Å for the bridging P–O bonds (Table 1 and Fig. 2) and are comparable with those of other condensed phosphates (Durif, 1995; Averbuch-Pouchot & Bagieu-Beucher, 1987; Chehimi-Moumen & Férid, 2007; Férid, 2006; Ben Zarkouna *et al.*, 2007).

Dy has coordination number 8 and is coordinated by terminal O atoms of four different polyphosphate chains in the form of a distorted dodecahedron, with Dy–O distances ranging from 2.301 (3) to 2.438 (3) Å (Table 1). The DyO₈ dodecahedra are isolated from each other, with the shortest Dy···Dy separation being 6.396 (8) Å.

K is ninefold coordinated by terminal O atoms of four different polyphosphate chains, with K-O distances ranging from 2.953 (3) to 3.370 (3) Å (Table 1).

Experimental

Single crystals of KDy(PO₃)₄ were synthesized by the flux method. K_2CO_3 (3 g) and Dy₂O₃ (0.3 g) were dissolved in H₃PO₄ (85%; 20 ml). The resulting mixture was heated to 473 K for 1 d and then kept at 673 K for 12 d. Excess phosphoric acid was leached out with hot water. Colourless crystals of (I) with a pseudo-cubic habit were obtained.

Crystal data

$KDy(PO_3)_4$	V = 964.97 (6) Å ³
$M_r = 517.48$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.2822 (4) Å	$\mu = 8.90 \text{ mm}^{-1}$
b = 8.9006 (3) Å	T = 298 (2) K
c = 10.9848 (4) Å	$0.14 \times 0.14 \times 0.14$ mm
$\beta = 106.284 \ (2)^{\circ}$	
Data collection	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.288, T_{\rm max} = 0.291$ 3857 measured reflections 2270 independent reflections 2054 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.059$ S = 1.112270 reflections

Table 1 Selected bond lengths (Å).

-			
Dy-O5	2.301 (3)	$P1 - O1^{vii}$	ⁱⁱ 1.485 (3)
Dy-O9 ⁱ	2.329 (3)	P1-O2	1.492 (3)
Dy-O12 ⁱⁱ	2.349 (3)	P1-O3	1.607 (3)
Dy-O8 ⁱⁱ	2.372 (3)	P1-O4	1.608 (3)
Dy-O11 ⁱⁱⁱ	2.380 (3)	P2-O5	1.481 (3)
Dy-O1 ^{iv}	2.384 (3)	P2-O6	1.485 (3)
Dy-O6 ⁱ	2.404 (3)	P2-O7	1.603 (3)
Dy-O2	2.438 (3)	P2-O3	1.605 (3)
$K - O2^{v}$	2.953 (3)	P3-O8 ⁱⁱⁱ	1.482 (3)
K-01	3.031 (3)	P3-O9	1.482 (3)
K-O9 ^{vi}	3.052 (3)	P3-O7	1.588 (3)
K-O11 ⁱⁱ	3.075 (3)	P3-O10	1.605 (3)
K-O12	3.123 (4)	P4-O11	1.476 (3)
K-O10	3.177 (3)	P4-O12	1.477 (3)
K-O8	3.287 (4)	$P4-O4^{ix}$	1.601 (3)
K-O4	3.308 (3)	P4-O10	1.605 (3)
K-O6 ^{vii}	3.370 (3)		
Symmetry codes:	(i) $x + \frac{1}{2}, -y + \frac{1}{2}, z$	$+\frac{1}{2}$; (ii)	$x + \frac{1}{2}, -y - \frac{1}{2}, z + \frac{1}{2};$ (iii)
$-x + \frac{3}{2}, y + \frac{1}{2}, -z - \frac{1}{2};$	(iv) $x, y + 1, z;$	(v)	$-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (vi)
$-x+\frac{3}{2}, y-\frac{1}{2}, -z-\frac{1}{2};$	(vii) $x, y - 1, z;$	(viii)	$-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (ix)
$x = \frac{1}{2}, -y = \frac{1}{2}, z = \frac{1}{2}.$			

163 parameters

 $\Delta \rho_{\rm max} = 1.98 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.03 \text{ e } \text{\AA}^{-3}$

The highest peak in the final difference Fourier map is 1.05 Å away from atom O6 and the deepest hole is 0.73 Å away from Dy.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97*.

References

- Averbuch-Pouchot, M.-T. & Bagieu-Beucher, M. (1987). Z. Anorg. Allg. Chem. 552, 171–180.
- Bagieu-Beucher, M. & Guitel, J. C. (1988). Z. Anorg. Allg. Chem. 559, 123–130.
- Ben Zarkouna, E., Horchani-Naifer, K., Férid, M. & Driss, A. (2007). Acta Cryst. E63, i1-i2.
- Brandenburg, K. (1998). *DIAMOND*. Version 2.0. University of Bonn, Germany.
- Bruker (1998). *SMART* (Version 5.059) and *SAINT-Plus* (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chehimi-Moumen, F. & Férid, M. (2007). Mater. Res. Bull. 42, 1-8.
- Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.
- Férid, M. (2006). Etude des propriétés cristallochimiques et physiques de phosphates condensés de terres rares. Paris: Publibook.
- Hashimoto, N., Takada, Y., Sato, K. & Ibuki, S. (1991). J. Lumin. 48-49, 893-897
- Hong, H. Y. P. & Chinn, S. R. (1976). Mater. Res. Bull. 11, 461-468.
- Horchani, K., Férid, M., Gâcon, J. C., Lecocq, S., Trabelsi-Ayadi, M. & Gregora, I. (2002). *Mater. Res. Bull.* 24, 1259–1267.
- Horchani, K., Gâcon, J. C., Férid, M., Trabelsi-Ayadi, M., Krachni, G. K. & Liu, G. K. (2003). Opt. Mater. 24, 169–174.
- Palkina, K. K., Chudinova, N. N., Litvin, B. N. & Vinogradova, N. V. (1981). Izv. Akad. Nauk SSSR Neorg. Mater. 17, 1501–1503. (In Russian).
- Palkina, K. K., Kuznetsov, V. G., Chudinova, N. N. & Chibiskova, N. T. (1976). *Izv. Akad. Nauk SSSR Neorg. Mater.* 12, 730–734. (In Russian).
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.